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 In this paper, we prove the existence of fixed and common fixed point 

results of generalized Geraghtycontractions  of self maps with altering 
distance function  invoving rational type expressions in partially 

ordered metric spaces. These results extend the some known results. 
Examples are provided in support of our results. 
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1. Introduction  and Preliminaries 

Banach contraction principle is one of the fundamental result in fixed point theory for which several 
authors generalized and etended it both in terms of considering more general contraction codition and a 
more general ambient space. Now-a-days, fixed point theory gained lot of interest in the direction of proving 
the existence of fixed points in partilly ordered metric spaces. Existence of fixed points in partially ordered 
sets has been considered by Ran and Reurings[14]. For more works on the existence of fixed points in partially 
ordered sets, we refer [9,10,11] and [15].  

Khan, Swaleh and Sessa [13]  studied the existence of fixed points in metric spaces by using altering 
distance functions. 
Definition 1.1   ([13]) A function ψ :R+→R+, R+ = [0,∞) is said to be an altering distance function if 
the following conditions hold:  

(i) ψ is continuous,  
(ii) ψ is non-decreasing, and  
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(iii) ψ(t) = 0 if and only if t = 0. 
Geraghty contractions depends on the class of functions  

 :[0, ) [0,1)/ ( ) 1 0S t tn n        

Defnition 1.2.[7] Let (X, d) be a metric space. A selfmapf : X → X is said to be a Geraghty contraction if there 

exists β∈S such that 

d(f(x), f(y)) ≤ β(d(x, y))d(x, y) for all x, y ∈ X. 

Theorem 1.3.[7] Let (X, d) be a complete metric space. Letf : X → X be a selfmap. If there exists 

β∈S such that 

d(f(x), f(y)) ≤ β(d(x, y))d(x, y) for all x, y ∈ X, 

thenf has a unique xed point in X. 
 
In 2013, Cabrera, Harjani and Sadarangani [5] proved the above theorem in the context of 
partially ordered metric spaces as follows. 
 

Theorem 1.4.[5]. Let (X, ≼ ) be a partially ordered set and supposethat there exists a metric d on 

X such that (X, d) is a complete metric space. Let T :X→X be a continuous and non-decreasing 

mapping such that (1.1.1) is satised for all x, y∈X with x≼ y. If there existsx0∈X with x0≼ T x0 then 

T has a xed point. 

  

Theorem 1.5.[5]. Let (X, ≼ ) be a partially ordered set and supposethat there exists a metric d on 

X such that (X, d) is a complete metric space. Assume that if {xn} is a non-decreasing sequence in 

X such that xn→x, then xn≼ x, for all n∈N. Let T :X→X be a non-decreasing mapping such that 

(1.1.1) is satised for all x, y∈X with x≼ y. If there existsx0∈X with x0≼ T x0 then T has a xed point. 
 

Theorem 1.6.[5]. In addition to the hypotheses of Theorem 1.3 ( orTheorem 1.4), suppose that for 

every x, y∈X, there exists u∈X such that u≼ x and u≼ y. Then T has a unique xed point.  

De nition 1.7. [3] Let (X,≼ , d) be a partially ordered metric space and let f :X→X be a selfmap. Let 

ψ∈ . If there exist β∈S and L ≥ 0 such that 

ψ(d(f(x), f(y))) ≤ β(ψ(M(x, y)))ψ(M(x, y)) + L.N(x, y) 
where  
M(x, y) = max{d(x, y), 1

2(d(x, f(x))+d(y, f(y))), 12(d(x, f(y))+d(y, f(x)))} N(x, y) = min{d(x, f(x)), d(x, f(y)), d(y, 

f(x))} for all x, y ∈ X withx≽  y then we call f is a ψ-weak generalized Geraghty contraction. 
 
Theorem 1.8.[3] Let (X, ≼ , d) be a partially ordered complete metric space. Let f : X → X be a non-

decreasing mapping such that there exists x0∈ X with x0≼  f(x0). Assume that f is ψ-weak 

generalized Geraghty contraction.  
Furthermore, assume that either 

(i) f is continuous; (or) 

(ii) X is such that if {xn} ⊂ X is a non-decreasing sequence with 

xn → x, then xn≼  x for all n ≥ 1. 
Further, if for any s >0, lim supβ(t) = β(s) then f has a fixed point in X. 
In 1975, Dass and Gupta [6] extended the Banach contraction prin-ciple through rational 
expression as follows. 
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Theorem 1.9.[6]. Let (X, d) be a complete metric space and  T: X→X a mapping such that there exist α, β≥ 0 
with α + β < 1 satisfying 

( , )[1 ( , )]
( , ) ( , )

1 ( , )

d y Ty d x Tx
d Tx Ty d x y

d x y
 


 


for all  x, y ∊  X. 

Then T has a unique fixed point.  
The following Lemma, which we use in our main theorem, can be easily established. 
 
 
Lemma 1.10.[2] Let (X, d) be metric space. Let {xn} be a sequencein X such that d(xn+1, xn) → 0 as 
n→ ∞. If {xn} is not a Cauchy sequence then there exist an ϵ > 0 and sequences of positive integers 
{m(k)} and {n(k)} with n(k)> m(k)> k and d(xm(k), xn(k)) ≥ ϵ. For each k > 0, corresponding to m(k), we 
can choose n(k) to be the smallest integer such that d(xm(k), xn(k)) ≥ϵ and d(xm(k), xn(k) 1) < ϵ. It can be 
shown that the following identities are satisfied. 
                (i ) lim

𝑘→∞
d(xn(k), xm(k)) =  ε(ii) lim

𝑘→∞
d(xn(k) -1, xm(k)+1) = ε, 

                   (iii) lim
𝑘→∞

d(xn(k)-1, xm(k)) = ε,       and (iv) lim
𝑘→∞

d(xn(k), xm(k)+1) = ε. 

In Section 2 , we prove the theorems of fixed point results satisfying a generalized Geraghty 

contractions  of selfmaps with altering distance function φ involving rational type expressions. 
                   2. MAIN RESULTS 

Notation : 

 = {φ :R+→R+/φ is non-decreasing, continuous and φ(t) = 0⇔ t = 0}. 

 

Theorem 2.1.Let (X, ≼ ) be a partially ordered set and (X, d) be a complete metric space.  

Let T :X→X be a non-decreasing mapping. Suppose there exist φ∈  such that, 

for all x, y∈X with x≼ y, 
φ(d(T x, T y)) ≤ β(φ(M(x, y))).φ(M(x, y))+L.min .φ(N(x, y)) (2.1.1) 

where 

( , )[1 ( , )] ( , )[1 ( , )] ( , )[1 ( , )]
( , ) max , , , ( , )

1 ( , ) 1 ( , ) 1 ( , )

d y Ty d x Tx d x Tx d y Ty d y Tx d x Ty
M x y d x y

d x y d x y d x y

    
  

      

and 

( , )[1 ( , )] ( , )[1 ( , )]
( , ) max , , ( , )

1 ( , ) 1 ( , )

d y Ty d x Tx d y Tx d x Ty
N x y d x y

d x y d x y

   
  

   
 

If there exists x0∈X with x0≼ T x0, then the sequence {xn} defined by xn+1= T xn for 

n = 0, 1,2, ... is a Cauchy sequence. 

 

Proof.Let x0∈ X be such that x0≼  T x0. (by hypothesis) 

We define {xn} in X by xn+1 = T xn for each n = 0, 1, 2, ..., .  
Since x0≼ T x0 and T is a non-decreasing function, by mathematical induction it follows that 

x0≼  T x0≼  T x1≼  T x2≼  ... ≼  T xn1≼  T xn≼  ... 

i.e., x0≼  x1≼  x2...≼ xn≼  xn+1≼ ...  

so that xn≼ xn+1 for each n = 0, 1, 2, ..., . 

If xn = xn+1 for some n∈N then xn = T xn = xn+1. 
Hence xn+2 = T xn+1 = T xn = xn. 
Then xn = xn+1 = xn+2= ... . 
Hence {xn} is a Cauchy sequence. 
Hence without loss of generality, we assume that xn ≠xn+1 for each n.  

http://www.ijesm.co.in/
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Since xn≼ xn+1 for each n≥ 0 from (2.1.1), we have 

 
( ( , ( ( , )1) 1d x x d Tx Txn n n n     

 

 ( ( ( , ))) ( ( , )) min ( ( , ))1 1 1M x x M x x L N x xn n n n n n                   

2.1.2 

 

 
( , )[1 ( , )] ( , )[1 ( , )] ( , )[1 ( , )]1 1 1 1 1 1( , ) max , , , ( , )1 1

1 ( , ) 1 ( , ) 1 ( , )1 1 1

d x Tx d x Tx d x Tx d x Tx d x Tx d x Txn n n n n n n n n n n nM x x d x xn n n n
d x x d x x d x xn n n n n n

            
      

 

  

 
( , )[1 ( , )] ( , )[1 ( , 1)] ( , )[1 ( , 1)]1 1 1 1max , , , ( , )1

1 ( , ) 1 ( , ) 1 ( , )1 1 1

d x x d x x d x x d x x d x x d x xn n n n n n n n n n n n d x xn n
d x x d x x d x xn n n n n n

           
      

 
 

( , )[1 ( , )]1 1max ( , ) , , ( , )1 1
1 ( , )1

d x x d x xn n n nd x x d x xn n n n
d x xn n

      
  

 

 

( , )[1 ( , )] ( , )[1 ( , )]1 1 1 1( , ) min , , ( , )1 1
1 ( , ) 1 ( , )1 1

d x Tx d x Tx d x Tx d x Txn n n n n n n nN x x d x xn n n n
d x x d x xn n n n

         
    

 

=0 

Suppose  max ( , ) , ( , ) ( , ),1 1 1d x x d x x d x xn n n n n n   , 

then ( , )[1 ( , )]1 1max ( , ) , , ( , )1 1
1 ( , )1

d x x d x xn n n nd x x d x xn n n n
d x xn n

   
  

  
= ( , )1d x xn n . 

Therefore from ( 2.1.2), 

( ( , ) ( ( , )1 1d x x d x xn n n n                     (2.1.3) 

Which  is  contradiction. 

  So     max ( , ) , ( , ) ( , )1 1 1d x x d x x d x xn n n n n n    

Therefore from 2.1.2  we have   ( ( , ) ( ( , )1 1d x x d x xn n n n       (2.1.4) 

Thus   it follows that {   (d (xn, xn+1))} is a strictly decreasing sequence of positive real numbers and so    lim
𝑛→∞



(d(xn, xn+1)) exists and it is r (say). i.e., lim
𝑛→∞

 (d (xn, xn+1)) = r ≥ 0. 

From (2.1.4), since    is non-decreasing, it follows that {d(xn, xn+1)} is also a strictly decreasing sequence of 

positive real numbers and so lim
𝑛→∞

d(xn, xn+1) exists and it is s (say). i.e., lim
𝑛→∞

 d (xn, xn+1) = s ≥  0. 

We now show that s = 0. 

Suppose that s>0. 

From (2.1.2)  

 

0 ( ( , ) ( ( ( , )  ( ( , ) 01 1 1d x x d x x d x xn n n n n n        as n  

So that   lim
𝑛→∞

 (d (xn, xn+1))  =r = 0  and hence s = 0. 

Now, we show that {xn} is Cauchy.  
Suppose that {xn} is not a Cauchy sequence and from lemma 1.10  

http://www.ijesm.co.in/
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Suppose n(k) > m(k) , ), we have xn(k) -1>xm(k) -1 

( ( , )) ( ( , ))( ) ( ) ( ) 1 ( ) 1d x x d Tx Txm k n k m k n k     

( ( ( , ( ) 1) ( ( , ) min ( ( , )( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1M x x k M x x L N x xm k n m k n k m k n k          )    (2.1.5) 

( , )[1 ( , )] ( , )[1 ( , ( ))] ( , )[1 ( , ( ) 1)]( ) ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1
( , ( ) 1) max , ,( ) 1

1 ( , ) 1 ( , ) 1 ( ,( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1

d x Tx d x Tx d x Tx d x Tx k d x Tx d x Tx kn k n k m k m k m k m k n k n n k m k m k n
M x x km k n

d x x d x x d x xm k n k m k n k m k n

           
 

      
, ( , )( ) 1 ( ) 1

)( ) 1
d x xm k n k

k

  
  

  

 

( , )[1 ( , )] ( , )[1 ( , ( ))] ( , )[1 ( , ( ))]( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) 1 ( ) 1 ( ) ( ) 1
max , , , ( , )( ) 1 ( ) 1

1 ( , ) 1 ( , ) 1 ( , )( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1

d x x d x x d x x d x x k d x x d x x kn k n k m k m k m k m k n k n n k m k m k n
d x xm k n k

d x x d x x d x xm k n k m k n k m k n k

        
   

        
 

On letting k → ∞, 

lim
𝑘→∞

M (xn(k)-1, xm(k)-1) =  max (0, 0,  
(1+ )

  
1

 


 , 0)=      

Similarly   lim
𝑘→∞

𝑁(xn(k)-1, xm(k)-1) =  min (0, 0,   )  =  0     

Therefore from 2.1.5, we have  

( ( , ))  ( ( ( , ( ) 1) ( ( , )  ( ) ( ) ( ) 1 ( ) 1 ( ) 1d x x M x x k d x xm k n k m k n m k n k        

and hence  

( ( , ))( ) ( )
    ( ( ( , ( ) 1) 1( ) 1

( ( , )( ) 1 ( ) 1

d x xm k n k
M x x km k n

d x xm k n k


 


  

 
 

On letting k → ∞, and from Lemma 1.10, we get  

( )
1     ( ( ( , ( ) 1) 1( ) 1

( )
M x x km k n

 
 

 
     

So that   ( ( ( , ( ) 1)) 1( ) 1M x x km k n       as   k → ∞. 

Since S  ,   
( ( , ( ) 1) 0( ) 1M x x km k n   . 

i.e., ( ) 0     and   is continuous, it follows that    = 0,  a contradiction . 

Therefore {xn} is a Cauchy sequence in X. 

Theorem 2.2.In addition of the hypothesis of Theorem 2.1 supposethat  is continuous. 
Then T has a fixed point. 
 
Proof.Let {xn} be as in theorem 2.1 then , by theorem 2.1 {xn} is aCauchy sequence in 
X. 
Since X is complete, there exists z such that limxn = z   as   n → ∞. 

Since T is continuous, T xn→T z that implies xn+1→T z. 
But xn+1→z. Therefore by the uniqueness of the limit, T z = z. 
 

Lemma 2.3.Under the hypothesis of Theorem 2.2 suppose that z is a fixed point of T and z≺ u for some u∈X and 

{Tnu} converges. Then Tn(u) →z. 

Proof.Now z ≺  u that implies T z ≼  T u so that z ≼  T u. 

http://www.ijesm.co.in/
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By induction, z≼ Tnu for every n. 
We have  
φ(d(z, T n+1(u))) = φ(d(T n+1(z), T n+1(u)))  
                                     = φ(d(T (T n(z), T (T n(u)))  
=  φ(d(T (z), T (T n(u))))  
                                   ≤   β(φ(M(z, T n(u))))φ(M(z, T n(u))) + L. min φ(N(z, T n(u)))   (2.3.1)  

1 1 1( , )[1 ( , )] ( , )[1 ( , )] ( , )[1 ( , )]
( , ( )) max , , , ( , )

1 ( , ) 1 ( , ) 1 ( , )

n n n n n nd T u T u d z Tz d z Tz d T u T u d T u Tz d z T un nM z T u d z T u
n n nd z T u d z T u d z T u

      
  

    

 

 
1 1 1( , )[1 ( , )] ( , )[1 ( , )] ( , )[1 ( , )]

max , , , ( , )
1 ( , ) 1 ( , ) 1 ( , )

1 1( , ) ( , )[1 ( , )]
     max , 0, , ( , )

1 ( , ) 1 ( , )

n n n n n nd T u T u d z z d z z d T u T u d T u z d z T u nd z T u
n n nd z T u d z T u d z T u

n n n nd T u T u d T u z d z T u nd z T u
n nd z T u d z T u

      
  

    

  
 

 

            

1( , )[1 ( , )]
max , ( , )

1 ( , )

( , )

n nd T u z d z T u nd z T u
nd z T u

nd z T u





 

  
  

  



 

Simillarly   ( , ( )) 0nN z T u   

From 2.3.1      
1( ( , ( ))  ( ( ( , ( )))  ( , ( )) .0 n n nd z T u M z T u z T u L          (2.3.2) 

Now suppose that  lim
𝑛→∞

  Tn (u)  = v ≠ z.   

Then d ( z, Tn(u)  > 0  for large n  consequently    (  d ( z, Tn(u)  > 0   for large n. 

Therefore from 2.3.2   
1( ( , ( )))   ( ( , ( )))n nd z T u d z T u   . 

Hence    
1( , ( )))   ( , ( ))n nd z T u d z T u    for large n’ 

Therefore {φ(d(z, Tn+1(u)))} is a decreasing sequence and converges to (say) and  
{d(z, Tn+1(u))} is also decreasing sequence and converges to s (say). 
From (2.3.2)  
Now β(φ(M(z, Tn(u))) → 1 then by the property of β, we have φ(d(z, Tnu)) → 0 and hence r = 0.  
Therefore φ(d(z, Tnu)) → 0 and hence d(z, Tnu) → 0. 

Therefore d(z, v) = 0 i.e.,lim ( )nT u  = z so that ( )nT u →z. 

 
 
Similarly we can prove the following lemma. 

Lemma 2.5.Under the hypothesis of Theorem 2.2 , suppose that z is a fixed point of T and z is 

comparable with u for some u∈X and {Tnu} converges.  
Then Tn(u) →z. 
 
Proof.Let z ≺  u and {T nu} converge. Then by lemma 2.4 {T nu} converges to z. 

Let z≻ u and {Tnu} converge.  
Then by lemma 2.4  {Tnu}  converges to z. 

 
Therefore z is comparable to u and {Tnu} converges to z. 
 

Theorem 2.6.In addition to the hypotheses of Theorem 2.2 we assumethe following:  
for every u, v∈X, there exists z∈X which is comparable to both u and v".  
Then T has a unique fixed point in X. 
 
Proof.Let u and v be two fixed d points of T .  
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Suppose z is comparable to both u and v . 

Since  z is comparable to both u    then by Lemma 2.5  ( )nT z u  . 

Since  z is comparable to both  v    then by Lemma 2.5  ( )nT z v . 

 
Now we prove the existence of common fixed point for a pair of selfmaps. 
 
 

Theorem 2.7. Let (X, d, ≼ ) be a partially ordered complete metric space. Let 

 S, T : X → X be self maps of X and T is S non-decreasing. Sup-pose there exist 

φ∈  such that 
φ(d(T x, T y)) ≤ β(φ(M(x, y)))φ(M(x, y)) +L min φ(N(x, y)), (2.7.1) 

 
where 

M(x, y) = max{ 

d(Sy,T y)[1+d(Sx,T 
x)] 

, 
d(Sx,T x)[1+d(Sy,Tyg)] 

, 

 d(Sy,T x)[1+d(Sx,Tyg)] 
, d(Sx, Sy)} 1+d(Sx,Sy)   1+d(Sx,Sy)  1+d(Sx,Sy) 

and d(Sy,T y)[1+d(Sx,T 
x)] 

   
d(Sy,T x)[1+d(Sx,Tyg)]  

    

N(x, y)= min{ , 

 

, d(Sx, Sy)}, for 

 

 1+d(Sx,Sy)   1+d(Sx,Sy)  

all x, y ∈ X with Sx≼ Sy. 
Further, assume that 

(i) T (X)⊆ S(X); 

(ii) there exists x0∈ X such that Sx0≼  T x0;  
(iii)S(X) is a complete subset of X; and 

(iv)if any non-decreasing sequence {xn} in X converges to x then{xn} ≼  x for all n = 0, 1, 2, .... 
Then S and T have a coincident point in X. 

 

Proof. By (ii), let x0∈ X such that Sx0≼  T x0. Since T (X)⊆ S(X), 

we choose x1∈X such that Sx1  = T x0.  Since Sx0≼ T x0 

and T is S non-decreasing, we have Sx0≼ Sx1, so that T x1 

By using the similarly argument we choose a sequence {xn} in X with 

Sxn+1= T xnfor each n = 0, 1, 2, ... . 

Further, since T x1≼ T x2 and T is S non-decreasing, we have Sx1≼  

Sx2so that T x2≼  T x3. On continuing this process, we get Sxn≼  

Sxn+1for all n = 0, 1, 2, ... . 

If Sxn = Sxn+1 for some n∈N then Sxn = T xn so that xn is a coin- 

cidence point of S and T .  

Hence, w. l. g., we assume that Sxn̸= Sxn+1 for each n 

then we have d(Sxn, Sxn+1) > 0 for all n. 

 

φ(d(Sxn, Sxn+1)) = φ(d(T xn  -1, T xn)) 
 

 1,
( ( ( ))) ( ( ))1, 1, .min ( ( ))n n n xn

M x M xn x n x L N x    
       (2.7.1) 
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( , )[1 ( , )] ( , )[1 ( , )] ( , )[1 ( , )]1 1 1 1 1 1 1( ) max , , , ( , )1, 1
1 ( , ) 1 ( , ) 1 ( , )1 1 1

n

d Sx Tx d Sx Tx d Sx Tx d Sx Tx d Sx Tx d Sx Sxn n n n n n n n n n n nM x d Sx Sxn x n n
d Sx Sx d Sx Sx d Sx Sxn n n n n n

             
      

 

( , )[1 ( , )]1 1max ( , ), , ( , )1 1
1 ( , )1

d Sx Sx d Sx Sxn n n nd Sx Sx d Sx Sxn n n n
d Sx Sxn n

      
  

 

And  
 

( , )[1 ( , )] ( , )[1 ( , )]1 1 1 1 1( ) min , , ( , )1, 1
1 ( , ) 1 ( , )1 1

( , )[1 ( , )]1 1min ( , ), , ( , )1 1
1 ( , )1

n

d Sx Tx d Sx Tx d Sx Tx d Sx Sxn n n n n n n nN x d Sx Sxn x n n
d Sx Sx d Sx Sxn n n n

d Sx Sx d Sx Sxn n n nd Sx Sx d Sx Sxn n n n
d Sx Sxn n

          
    

      
 

0



 

 

 

If  
( , )[1 ( , )]1 1( ) max ( , ), , ( , ) ( , )1, 1 1 1

1 ( , )1
n

d Sx Sx d Sx Sxn n n nM x d Sx Sx d Sx Sx d Sx Sxn x n n n n n n
d Sx Sxn n

        
  

 

 

 

Then from 2.7.1  
( ( , ) ( ( ( ))) ( ( )) .0 ( ( , )1 1, 1, 1n n
d Sx Sx M x M x L d Sx Sxn n n x n x n n           

Which is contradiction . 

 

Hence    max ( , ), ( , ) ( , )1 1 1d Sx Sx d Sx Sx d Sx Sxn n n n n n    

Therefore     

 
( , )[1 ( , )]1 1( ) max , ( , ) ( , )1, 1 1

1 ( , )1
n

d Sx Sx d Sx Sxn n n nM x d Sx Sx d Sx Sxn x n n n n
d Sx Sxn n

       
  

 

 

Therefore from 2.7.2  

 

We get
( ( , ) ( ( ( ))) ( ( )) .0 ( ( ))1 1, 1, 1,n n n
d Sx Sx M x d Sx L d Sxn n n x n Sx n Sx         

(2.7.3) 

 
Thus it follows that {φ(d(Sxn, Sxn+1))} is a strictly decreasing sequence of positive real 
numbers and so limφ(d(Sxn, Sxn+1)) exists  and it is r (say). 
 
i.e.,  lim φ(d(Sxn, Sxn+1)) = r ≥ 0. 

 
sinceφ is non- decreasing, it follows that {d(Sxn, Sxn+1)} is a strictly decreasing 
sequence of positive real numbers and so limd(Sxn, Sxn+1) exists and it is r′ (say). 
 
i.e.,  lim d(Sxn, Sxn+1) = r′ ≥ 0. 

 
Suppose that r′> 0. 

From 2.7.3  φ(d(Sxn, Sxn+1)) ≤ β(φ(d(Sxn - 1, Sxn)))φ(d(Sxn - 1, Sxn)). 
Taking limit supermum on both sides, we have  

limφ(d(Sxn, Sxn+1)) ≤limβ(φ(d(Sxn  -1, Sxn)))φ(d(Sxn - 1, Sxn))     0  

              

n → ∞              
              

So that   
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limφ(d(Sxn  -1, Sxn)) =   0  . which is contradiction  ,  so that  r′   =  0 
  

n → ∞  
Now, we show that {Sxn} is Cauchy.  
Suppose that {Sxn} is not a Cauchy sequence. Then by lemma 1.10 

 
( ( , ) ( ( , )( ) ( ) ( ) 1 ( ) 1d Sx Sx d Tx Txm k n k m k n k     

 

( ) 1 ( ) 1, ( ) 1
( ( ( ))( ) 1, ))) ( ( )) min ( ( ( ) 1, ( ) 1n k m k n k

M x x xm k x M x x L N m k n k     
    

(2.7.4) 

 
( , )[1 ( , )] ( , )[1 ( , )]( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1

, ,
1 ( , ) 1 ( , )( ) 1 ( ) 1 ( ) 1 ( ) 1

( ) max( ) 1, ( ) 1
( , )[1 ( , )]( ) 1 ( ) 1 ( ) 1 ( ) 1

d Sx Tx d Sx Tx d Sx Tx d Sx Txn k n k m k m k m k m k n k n k

d Sx Sx d Sx Sxm k n k m k n k
M x xm k n k

d Sx Tx d Sx Txn k m k m k n k

        

    
 

   
, ( , )( ) 1 ( ) 1

1 ( , )( ) 1 ( ) 1
d Sx Sxm k n k

d Sx Sxm k n k

 
 
  
 
 

      

 

 

 

 

On letting  k→ ∞,  we get   ( )( ) 1, ( ) 1M x xm k n k  =   ,   

 
( ) 0( ) 1, ( ) 1N x xm k n k    

 
From 2.7.4   and taking limit supremum, we have  
φ(ϵ) = lim φ(d(Sxm(k), Sxn(k))) ≤ lim β(φ(M(xm(k)  1, xn(k)  1)))φ(ϵ) 

 
and it implies that 
limφ(M(xm(k)-  1, xn(k) - 1)) = 0. 

 
Since β∈S, φ(M(xm(k) -1, xn(k)- 1)) → 1 as k→ ∞. i,e., φ(ϵ) 

= 0, and φ is continuous, it follows that ϵ = 0, a 

contradiction. 
Therefore {Sxn} is a Cauchy sequence in X. 

Since S(X) is complete, there exists z∈S(X) such that 
limSxn+1 = limT xn = Sy = z for some y∈X. 

n!1 n!1 
Now we show that Sy = T y.  
Suppose that Sy ≠T y, i.e., d(Sy, T y) > 0.  
Now, suppose that the condition (iv) holds. Since {Sxn} is a non-decreasing 

sequence and Sxn→Sy for some y∈X, we have Sxn≼ Sy for all n≥ 0. 
Now, from (2.7.1), we have 

φ(d(T xn, T y)) ≤ β(φ(M(xn, y)))φ(M(xn, y))+L min(N(xn, y))  ( 2.7.5) 

 
( , )[1 ( , )] ( , )[1 ( , )] ( , )[1 ( , )]1 1 1( , ) max , , , ( , )

1 ( , ) 1 ( , ) 1 ( , )

d Sy Ty d Sx Sx d Sx Sx d Sy Ty d Sy Sx d Sx Tyn n n n n nM x y d Sx Syn n
d Sx Sy d Sx Sy d Sx Syn n n

        
    

 

 

 
( , )[1 ( , )] ( , )[1 ( , )]1 1( , ) max , , ( , )

1 ( , ) 1 ( , )

d Sy Ty d Sx Sx d Sx Sx d Sy Tyn n n nN x y d Sx Syn n
d Sx Sy d Sx Syn n

      
   

 

On letting  n→ ∞  . we  get 

( , )M x yn =   0,      and   ( , )N x yn =  0. 
On letting n→ ∞ in (2.7.5), we get  
φ(d(Sy, T y)) ≤ β(φ(d(Sy, T y)))φ(d(Sy, T y)) + L.0, which implies that 
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φ(d(Sy, T y)) = 0. 

 Hence T y = Sy so that T and S have a coincidence point y. 

 

Theorem 2.8. In addition to the hypotheses of Theorem 2.7, if T and S are 
weakly compatible, and T is continuous then T and S have a unique 
common fixed point in X. 

 
Proof.From the proof of Theorem 2.7, we have {Sxn} is non-decreasingsequence that converges 
to Sx. 
Let w = T z = Sz.  
Since T and S are weakly compatible, T w = T Sz = ST z = Sw and Sz≼ SSz= Sw.  
Suppose that w =T w.  
Consider 
φ(d(w, T w)) = φ(d(T z, T T z))  
≤ β(φ(M(z, T z)))φ(M(z, T z)) + L min φ(N(z, T z)) 
where 

M(z, T z) = max{ 

d(ST z,T T z)[1+d(Sz,T 
z)] 

, 
d(Sz,T z)[1+d(ST z,TSz)] 

,  1+d(Sz,ST z) 1+d(Sz,ST z) 

 
d(ST z,T z)[1+d(Sz,T T 

z)] 

, d(Sz, ST z)} 

   

 1+d(Sz,ST z)     
= max{ d(Sw,T T z),0, d(Sw,T z)[1+d(Sz,T T z)], d(Sz, Sw)} 

1+d(Sz,Sw)1+d(Sz,Sw)  
= max{d(T w,T T z),0, d(T w,w)[1+d(w,T T z)], d(w, T w)}  

1+d(w,T w)1+d(w,T w)  
= max{ d(T w,T w),0, d(T w,w)[1+d(w,T w)], d(w, T w)} 

1+d(w,T w)1+d(w,T w)  
 

= d(w, T w). 

N(z, T z) = min{ 

d(ST z,T T z)[1+d(Sz,T 
z)] 

, 

d(Sz,T z)[1+d(ST z,TSz)] 

, d(Sz, ST z)}  1+d(Sz,ST z) 1+d(Sz,ST z) 

= min{ 

d(Sw,T T z) 

, 0, d(Sz, Sw)} 

  

1+d(Sz,Sw)   
= min{d(T w,T T z), 0, d(w, T w)} 

1+d(w,T w)  

= min{ 

d(T w,T w) 

, 0, d(w, T w)} = 0. 
1+d(w,T 

w)  
from (2.2.1) φ(d(w, T w)) < φ(d(w, T w)),  
a contradiction, so that w = T w. Hence w = T w = Sw. Therefore w 
is a common xed point of T and S. Uniqueness: 

 

Let z, and w be two  xed points of T and S with z ≠w.  
φ(d(z, w)) = φ(d(T z, T w))  
≤ β(φ(M(z, w)))φ(M(z, w)) + L min(N(z, w)) 
Where 

 

M(z, w) = max{ 

d(Sw,T w)[1+d(Sz,T 
z)] 

, 

d(Sz,T z)[1+d(Sw,T 
w)] 

, 1+d(Sz,Sw) 1+d(Sz,Sw) 

 
d(Sw,T z)[1+d(Sz,T 

w)] , d(Sz, Sw)}    
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 1+d(Sz,Sw)     
= max{ d(w,w),0, d(w,z)[1+d(z,w)], d(z, w)} 

1+d(z,w)1+d(z,w)  
= max{0, 0, d(z, w), d(z, w)}  
= d(z, w). 
N(z, w) = min{d(Sw,T w)[1+d(Sz,T z)], d(Sz,T z)[1+d(Sw,T w)], d(Sz, Sw)}  

1+d(Sz,Sw) 1+d(Sz,Sw)  
= min{1+

d(w,w
d(z,z

), 0, d(z, w)}  
= min{0, 0, , d(z, w)}  
= 0.   

from (2.2.1) φ(d(z, w)) ≤β(φ(d(z, w)))φ(d(z, w)) + L.0 φ(d(z, w))< φ(d(z, w)) 

 

acontradiction, so that   z = w  Therefore T and    S   have a unique common xed point in 

X. 

 

The following is an example in support of our main Theorem 2.1. 
 

Example 2.9. Let X = 1 1
0, , , 1

4 2

 
 
 

      with the usual metric. 

We de ne partial order ≼  on X as follows: 
 

≼ := 
1 1 1 1 1 1

(0, 0), ( , ), ( , ),(1,1), ( , )
4 4 2 2 4 2

 
 
 

 

 

Clearly (X, d) is a metric space and (X,≼ ) is a partially ordered set. 

We de ne T :X→X by      1 1 1 1
(0) , ( ) , ( ) 1,

4 4 2 2
T T T                          and T (1) = 1. 

     

Moreover, we choose 1
0

4
x  ∈X then x≼ T (x ). 

   

We de ne β : [0,∞) → [0, 1) by β(t) =  1

1 t
       We now verify the inequality (2.1.1) for the 

elements (1
4,1

2 ) and in the 
remaining cases the inequality (2.1.1) holds trivially. 

Case(i) : (x, y) = 1 1
( , )

4 2
 

 
In this case 1 1

( ( ( , )))
4 2

d T = 1 1 1
( ( ,1)) ( )

2 2 4
d   , and  

1 1 3
( , ))
4 2 5

M  , and 1 1 1
( , )
4 2 4

N   
 

1 1 1 3 3 1
( ( ( , ))) ( ( )) ( ) ( )

4 2 4 5 5 4
d T L        

holds for L ≥ 3. 
Therefore Tsatises all the conditions of Theorem 2.1 and Thas a uniquefixed point 1. 
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